

INFRARED GAS ANALYZER Type: ZRE

A maximum of 5 gas components (of NOx, SO₂, CO, CO₂, CH₄, and O₂) can be measured simultaneously and continuously.

Simultaneous and continuous measurement of the concentration of up to 5 gas components Excellent prolonged stability Compact size and simple operation Virtually unaffected by the interference of moisture. Substantial functions, including automatic calibration, communications, and alarms (Option)

Fuji Electric Co., Ltd.

ECNO:337c

Compact body packed with abundant functions Fuji infrared gas analyzer

132.5mm

Type ZRE

Analog output

Note) Used for special case.

connecto

Note) Sample gas

Note) Sample gas

inlet 2 Rc1/4 or NPT1/4

Power supply/grounding

terminal M3

outlet 2 Rc1/4 or NPT1/4 (100 to 240 VAC, 50/60 Hz)

Adoption of our unique infrared ray single-beam system

Measures the concentration of up to 5 gas components simultaneously and continuously.

The concentration of five gas components (of SO₂, NOx, CO, CO₂, CH₄, and O₂) can be measured. For example, the components in flue exhaust gas (SO2, NOx, CO, CO₂, and O₂) can be measured simultaneously and continuously.

	NO	SO2	CO	CO2	CH₄	O2
Single-component analyzer	0	0	0	0	0	Can be added by designation
Double-component analyzer	00	0	00	00	00	Can be added by designation
Three-component analyzer	0	0	00	0	0	Can be added by designation
Four-component analyzer	0	0	0	0		Can be added by designation

Excellent prolonged stability, easy maintenance, and high-precision measurement with repeatability of 0.5%

Virtually unaffected by the interference of moisture

Analysis is almost unaffected by any moisture present in the sample gas. Our unique interference correcting function has significantly reduced the effect of moisture.

Interference component	CO₂sensor	COsensor	CH₄sensor	SO₂sensor	NOsensor
H₂O saturation at 20°C	1% or lower	1% or lower	1% or lower	-	-
H₂O saturation at 2°C	-	2.5% or lower	-	2% or lower	2% or lower
CO 1000ppm	1% or lower	-	1% or lower	1% or lower	1% or lower
CO₂ 15%	-	1% or lower	1% or lower	1% or lower	2% or lower
CH₄ 1000ppm	1% or lower	1% or lower	-	50ppm or lower	-

Communication with a PC achieved with RS485 (Modbus) communication function (Option)

RS-485 (Modbus) communication

RS485 connector for communication on the rear face

Details of communication: Read/write of various settings, output of measured concentration value and instrument status

Zero/span auto calibration function (option) eliminates irksome calibration work.

Abundant digital I/O signals (Option)

External digital input signal

Range switching, auto calibration start, output signal hold, average value reset

Digital output signal (1c relay contact)

Identification of each component range, instrument failure, calibration error, auto calibration in progress, upper/lower limit alarm for each component, pump ON/OFF, solenoid valve drive for auto calibration

Simple gas sampling system backed by a substantial track record

Example of measurement of exhaust gas from a boiler or refuse incinerator (NO, SO₂, CO, CO₂, and O₂ measurement)

Example of measurement of CO, CH₄, and CO₂ from an industrial furnace

Easy installation to equipment

$NO_2 \rightarrow NO$ gas converter (Type: ZDLO4)

- Target gas: Exhaust gas from general
 - boilers, atmosphere Catalyst usage: 2 cm²
 - Catalyst replacement interval:
 - Approximately 1 year
 - Flow rate of the gas to be analyzed: 0.5 L/min or lower
 - Conversion efficiency: 90% or higher (conforming to JIS)
 - Temperature control: Built in Power supply voltage: 100 to 240 VAC,
 - 50/60 Hz
 - External dimensions: 212(H)x148(W)x130(D) mm

Zirconia oxygen sensor (Type: ZFK7)

- Measurement range: 0 to 25%
- Repeatability: Within ±0.5% of full scale
- Zero drift: Within ±1% of full scale/week
- Span drift: Within ±2% of full scale/week Response time: Approximately 20 sec
- (90% response)
- Temperature control: Built in
- Oxygen concentration display: Displayed on the gas analyzer connected
- Flow rate of the gas measured: 0.5±0.25 L/min
- Power supply voltage: 100 to 115 VAC, 50/60 Hz
- External dimensions: 140(H)x170(W)x190(D) mm

Gas extractor applicable up to 1300°C

(Type: ZBAK2)

- System: Electrical heating Maximum temperature of the gas used:
- 800°C or 1300°C Material of the gas-contacting area:
- SUS316, Viton
 Extractor material: SUS316 or SiC
- Mounting method: Flange
- Sample gas outlet: Rc1/2
- Filter: SUS316 wire mesh (40 µm)
- Power supply voltage: 100 VAC, 50/60 Hz,

Electronic gas cooler

(Type: ZBC9)

100 VA

- Fixed dehumidification flow rate (Max.): 1.5 L/min
- Inlet gas temperature: 40°C or lower
- Output gas dew point: 0.5°C to 3°C
- Pressure: 50 kPa (Max.)
- Power supply voltage: 100 VAC, 50/60 Hz • Gas outlet/inlet: Rc1/4
- Dehumidification check function: With
- check terminal
 - External dimensions: 250(H)x200(W)x167(D) mm

4

Examples of Application

Infrared CO₂ and O₂ gas analyzer for storage of foodstuffs such as vegetable and fruit.

Foodstuffs can be kept fresh by controlling the CO_2 and O_2 concentrations properly in a storage house.

Example of measurement of exhaust gas from a boiler or refuse incinerator (NO, SO₂, CO, CO₂, and O₂ measurement)

Code symbols

10 11 12 13 14 15 16 17 18 19 20 23 6 7 8 9 21 22 24 25 ZRE A 1 Y

Digit	Description			Note		Code	
4	Standard						А
5	<installation< th=""><th>on structure</th><th>9></th><th></th><th></th><th></th><th></th></installation<>	on structure	9>				
	19" rack mount type, Conforming to EIS						В
	19" rack m	nount type,	Conformin	g to JIS			С
	Panel mou	unt type					D
6	<measurab< th=""><th>le componer</th><th>nts (NO, SO₂,</th><th>CO, CH₄)></th><th></th><th>1</th><th></th></measurab<>	le componer	nts (NO, SO ₂ ,	CO, CH ₄)>		1	
	1st	2nd	3rd	4th	Note 1		
	None						Y
	NO						Р
	SO ₂						А
	CO						D
	CO						B
	СЦ						5
		SO.				┥	F
	NO						G
	0	00					u I
							J
							ĸ
		CH4	00			+	
	NO	SO ₂	00				
		CO	CH4				1
	NO	SO ₂	CO2	CO			V
	Others					4	Z
7	<measura< th=""><th>ble compo</th><th>nent (O2)></th><th></th><th></th><th></th><th></th></measura<>	ble compo	nent (O2)>				
	None						Y
	External C	D2 sensor ((to 1 VDC)	1	Note 2		1
	External z	rconia O2	sensor (Typ	oe ZFK7)			2
	Built-in fue	el cell O2 se	ensor				3
	Built-in pa	ramagnetic	CO2 sensor				4
9	<1st comp	onent, 1st r	neasureme	nt range>	Note 3		
	See Table 1.						
10	<pre><1st component, 2nd measurement range></pre>					1	
	See Table 1.						
11	<pre></pre>					1	
	See Table 1.					1	
12	<pre></pre> <pre></pre> <pre></pre>					1	
	See Table 1						
13	<3rd component 1st measurement range>					1	
	See Table	1.		U			
14	<3rd comp	onent. 2nd	measureme	ent range>	Note 3	1	
	See Table	1.		g			
15	<4th comp	onent 1str	neasureme	nt range>	Note 3	╡	
	See Table	1		in ranger			
16	<4th comp	onent 2nd	measureme	ent range>	Note 3	┥	
	See Table	1	modourom	Jin rungoz	11010 0		
17	<measura< th=""><th>ble range (</th><th>O₂ sensor)</th><th>></th><th></th><th>┥</th><th></th></measura<>	ble range (O ₂ sensor)	>		┥	
.,	None	ibie range (02 3011301)				Y
	0 to 5/10%	1					^
	$0 to 5/70^{7}$	6					B
	0 to 3/237	0/.					C
	0 to 5%	/0				┥	
	0 to 10%						
	0 to 10%						V
	0 to 25%						V D
	0 10 50%						P
	0 to 100%)					R 7
10	Others					4	2
18	<gas out<="" th=""><th>et/inlet con</th><th>nection></th><th></th><th></th><th></th><th></th></gas>	et/inlet con	nection>				
	Rc1/4						1
	NPT1/4					4	2
19	<output s<="" th=""><th>ignal></th><th></th><th></th><th></th><th></th><th></th></output>	ignal>					
	0 to 1 VD0	C					А
	4 to 20 m/	A DC					В
	0 to 1 VDC	+ RS485 cc	ommunicatio	n function			С
	4 to 20 mA	DC + RS485	communicat	ion function			D

Digit		Desci	ription		Note	(Code]		
20	<display></display>	,								
	Japanese	1					J			
	English					E	1		Table 1.	
	Chinese)		<measurement ran<="" th=""><th>ge</th></measurement>	ge
21	<o2 collect<="" th=""><th>ion and O2 a</th><th>verage value</th><th>e output></th><th>Note 4</th><th></th><th></th><th></th><th>C0</th><th>de table></th></o2>	ion and O2 a	verage value	e output>	Note 4				C0	de table>
	None					1	(Measurement range	Code
	With O ₂ co	orrection ou	utput			A	A		0 to 100ppm	В
	With O2 correct	ction output, O2	correction and a	verage output)		0 to 200ppm	C
22	<optional< th=""><th>function (D</th><th>I, DO)></th><th></th><th></th><th></th><th></th><th></th><th>0 to 250ppm</th><th>D</th></optional<>	function (D	I, DO)>						0 to 250ppm	D
	FAULT	Auto	Upper/lower	Range identi-					0 to 300ppm	S
		calibration	limit alarm	fication/Remote					0 to 500ppm	E
	None					1	(0 to 1000ppm	F
	0					A	A		0 to 2000ppm	G
	0	0				E	3		0 to 2500ppm	U
	0		0)		0 to 3000ppm	Т
	0			0)		0 to 5000ppm	Н
	0	0	0			E	Ξ		0 to 1%	J
	0		0	0		F	-		0 to 2%	K
	0	0		0			à		0 to 3%	Q
	0	0	0	0	Note 5	ŀ	ł		0 to 5%	L
24	<unit></unit>								0 to 10%	M
	ppm, %					/	۹.		0 to 20%	N
	mg/m³, g/m³		Note 6	E	3		0 to 25%	V		
25	<adjustment></adjustment>		Note 7				0 to 40%	W		
	Standard				A	A		0 to 50%	Р	
	For heat treatment furnace)		0 to 70%	X	
	For conve	erter				[)		0 to 100%	R
	Others						2		Others	Z

Note 1: Specify code "Y" when the O_2 sensor only is required. When NO, SO₂ measurment is specified [Auto calibration] must be specified 22th digit.

Note 2: Feed input signals from the external O_2 sensor linearly within the range 0 to 1 VDC against the full scale. Our exclusive zirconia O2 sensor (ZFK7) and external oxygen sensor are also optionally available.

Note 3: Select the measurable component and range from the table on pages 7. If code "Y" is selected for the 6th digit, specify "Y" for all of the digits from the 9th to 16th.

Note 4: O_2 correction output and O_2 correction average output are made for NO, SO₂, and CO only. Note 5: Not applicable to the 5-component sensor. The number of output points for upper/lower limit alarms is 3 for the 4-component sensor.

Note 6: Even if code "B" is specified, select the measurement range in unit of ppm. A value converted into the mg/m³ range will be delivered. Applicable only to NO, SO₂, and CO sensors. See the following table for correspondence between ppm and mg/m³.

Note 7: Adjustment will be made using the following balance gas for all the codes from "A" to "D" before delivery. Specify "Z" if adjustment with other gases is desired. Standard "A": Balance gas N₂, "C" for heat treat furnace: Balance gas 30% H₂/70% N₂, "D" for converter: Balance gas CO, CO₂

Attach a table that lists the components contained in the gas to be measured if "Others" is specified.

If mg/m³ is selected, specify the minimum to maximum range in ppm that corresponds to your desired range expressed in mg/m³. Delivery will be made with adjustment made to satisfy the corresponding mg/m³ range.

The conversion formula "ppm" unit into "mg/m3" unit.

NO $(mg/m^3) = 1.34 \times NO (ppm)$

 $SO_2 (mg/m^3) = 2.86 \times SO_2 (ppm)$

 $CO (mg/m^3) = 1.25 \times CO (ppm)$

		Corresponding range expressed in mg/m ³		
Range code	Unit: ppm	NO	SO ₂	CO
С	0 to 200ppm	0 to 260mg/m ³	0 to 570mg/m ³	0 to 250mg/m ³
D	0 to 250ppm	0 to 325mg/m ³	0 to 700mg/m ³	0 to 300mg/m ³
S	0 to 300ppm	0 to 400mg/m ³	0 to 850mg/m ³	0 to 375mg/m ³
E	0 to 500ppm	0 to 650mg/m ³	0 to 1400mg/m ³	0 to 600mg/m ³
F	0 to 1000ppm	0 to 1300mg/m ³	0 to 2800mg/m ³	0 to 1250mg/m ³
G	0 to 2000ppm	0 to 2600mg/m ³	0 to 5600mg/m ³	0 to 2500mg/m ³
U	0 to 2500ppm	0 to 3300mg/m ³	0 to 7100mg/m ³	0 to 3000mg/m ³
Т	0 to 3000ppm	0 to 4000mg/m ³	0 to 8500mg/m ³	0 to 3750mg/m ³
Н	0 to 5000ppm	0 to 6600mg/m ³	0 to 14.00g/m ³	0 to 6250mg/m ³

List of measurable components and ranges

Fabrication is possible under the condition that the range ratio of the first to the second is 1 to 10 or less.

For details of measuring range, refer to specifications (EDS3-133).

1-component analyzer

<u> </u>	-				
Measurable	1st ra	ange	2nd range		
components	Minimum range	Maximum range	Minimum range	Maximum range	
NO	0 to 200ppm	0 to 5000ppm	0 to 250ppm	0 to 5000ppm	
SO2	0 to 200ppm	0 to 10%	0 to 250ppm	0 to 10%	
CO	0 to 200ppm	0 to 100%	0 to 250ppm	0 to 100%	
CO2	0 to 100ppm	0 to 100%	0 to 200ppm	0 to 100%	
CH₄	0 to 500ppm	0 to 100%	0 to 1000ppm	0 to 100%	

2-component analyzer

NO+SO ₂								
Measurable	1st r	ange	2nd range					
components	Minimum range	Maximum range	Minimum range	Maximum range				
NO	0 to 200ppm	0 to 5000ppm	0 to 250ppm	0 to 5000ppm				
SO ₂	0 to 200ppm	0 to 5000ppm	0 to 250ppm	0 to 5000ppm				

NO+CO

Measurable	1st ra	ange	2nd range		
components	Minimum range	Maximum range	Minimum range	Maximum range	
NO	0 to 200ppm	0 to 5000ppm	0 to 250ppm	0 to 5000ppm	
CO	0 to 200ppm	0 to 5000ppm	0 to 250ppm	0 to 5000ppm	

CO₂+CO

Measurable	1st ra	ange	2nd range		
components	Minimum range	Maximum range	Minimum range	Maximum range	
CO ₂	0 to 100ppm	0 to 100%	0 to 200ppm	0 to 100%	
СО	0 to 200ppm	0 to 100%	0 to 250ppm	0 to 100%	

CH₄+CO

Measurable	1st ra	ange	2nd ra	
components	Minimum range	Maximum range	Minimum range	Maximum range
CH₄	0 to 500ppm	0 to 100%	0 to 1000ppm	0 to 100%
СО	0 to 200ppm	0 to 100%	0 to 250ppm	0 to 100%

CO_2+CH_4

Measurable	1st r	ange	2nd range		
components	Minimum range	Maximum range	Minimum range	Maximum range	
	0 to 100ppm	0 to 100%	0 to 200ppm	0 to 100%	
CH₄	0 to 500ppm	0 to 100%	0 to 1000ppm	0 to 100%	

3-component analyzer

NO+SO₂+CO

Measurable	rable 1st range		2nd range		
components	Minimum range	Maximum range	Minimum range	Maximum range	
NO	0 to 200ppm	0 to 5000ppm	0 to 250ppm	0 to 5000ppm	
SO ₂	0 to 200ppm	0 to 5000ppm	0 to 250ppm	0 to 5000ppm	
со	0 to 200ppm	0 to 5000ppm	0 to 250ppm	0 to 5000ppm	

Measurable gas components	1st range		2nd range	
	Minimum range	Maximum range	Minimum range	Maximum range
CO ₂	0 to 5000ppm	0 to 100%	0 to 1%	0 to 100%
CO	0 to 500ppm	0 to 100%	0 to 1000ppm	0 to 100%
CH₄	0 to 5000ppm	0 to 100%	0 to 1%	0 to 100%

4-component analyzer

NO+SO₂+CO₂+CO

Measurable gas components	1st range		2nd range	
	Minimum range	Maximum range	Minimum range	Maximum range
NO	0 to 200ppm	0 to 5000ppm	0 to 250ppm	0 to 5000ppm
SO ₂	0 to 200ppm	0 to 5000ppm	0 to 250ppm	0 to 5000ppm
	0 to 1%	0 to 50%	0 to 2%	0 to 50%
CO	0 to 200ppm	0 to 2500ppm	0 to 250ppm	0 to 2500ppm

Major specifications

Measurement principle	NO, SO ₂ , CO, CO ₂ , ray absorption (Sin O ₂ : Fuel cell (built in by Fuji) or Paramag	CH ₄ : Non-dispersive gle-beam system) n) or zirconia (extern gnetic (built in)	e infrared ally installed ZFK7	
Measurable	Measured component	Minimum range	Maximum range	
component and	NO	0-200ppm	0-5000ppm	
range	SO ₂	0-200ppm	0-10 vol%	
	CO ₂	0-100ppm	0-100 vol%	
	со	0-200ppm	0-100 vol%	
	CH₄	0-500ppm	0-100 vol%	
	O ² Fuel cell (built in)	0-10 vol%	0-25 vol%	
	O ² Zirconia Paramagnetic O ² sensor	0-5 vol%	0-25 vol%	
	Switching between 2 ranges allowed for each component. Maximum range ratio: 1:10 (excluding O ₂)			
Repeatability	±0.5% FS			
Linearity	±1.0% FS			
Zero drift	Within ±2%FS/week			
Span drift	Within ±2%FS/week			
Response time	Within 60 sec (90% response from gas inlet) Varies depending on the components to be measured and the measurement range.			
Analog	4 to 20 mA or 0 to 1 VDC (12 points at max.)			
output signal	Instantaneous value output			
	Ω			
	O_2 correction average output, O_2 average output			
Display	LCD with backlight (Japanese, English or chinese by designation) Instantaneous value of each component, O ₂ correction instantaneous value. O ₂ correction average, O ₂ average, parameter setting, with oute OEE function			
Range switching	Manual switching by key operation, auto switching, external			
	contact input switch	ning (option)		
External digital input (option)	Voltage contact (supply 12 to 24 VDC/15 mA max. at ON) 9 points at max. Range switching, auto calibration start, output signal hold, average value reset			

Contact output function (option)	1c relay contact (15 points at max.) Identification of each component range, instrument failure,calibration error, auto calibration in progress, upper/ lower limit alarm for each component, solenoid valve drive for auto calibration
Communication function (option)	RS-485 (MODBUS protocol) Details of communication: Read/write of each setting, output of measured concentration and instrument status Type-B with USB connector (front face) and USB driver
Sample gas flowmeter	Built in
Gas outlet/inlet dimension	Rc1/4 or NPT1/4
Purge gas flow rate	1 L/min (Performed as required.)
Structure	Indoor type with steel case
Ambient temperature/ humidity	-5°C to 45°C, 90 RH or lower (No condensation allowed.)
Mounting method	19" rack mount, panel mount, desktop
Power supply voltage	100 to 240 VAC, 50/60 Hz, 100VA
Outside dimension	133×483×418 mm (19" rack mount) 133×440×418 mm (Panel mount)
Mass	Approximately 8 kg (5-component analyzer)
Applicable standard	CE mark

<Measured gas conditions>

Flow rate	0.5L/min±0.2L/min
Temperature	0°C to 50°C
Pressure	10 kPa or lower
Dust	100 µg/Nm3 or lower (Particle size: 0.3 µm or smaller)
Mist	Not allowed.
Moisture	Saturation at room temperature or lower (No condensation allowed.)
	Saturation at 2°C or lower (No condensation allowed.)
Corrosive	HCI: 1 ppm or less
component	

• Outline diagram (Unit: mm)

Fuji Electric Co., Ltd.

International Sales Div.

Sales Group Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan http://www.fujielectric.com Phone: 81-3-5435-7280, 7281 Fax: 81-3-5435-7425 http://www.fujielectric.com/products/instruments/